

Solarheat BALLON DE STOCKAGE

- BVFC-0 BVFC-1 BVFC-2
- BVRC-1500 BVRC-2000 BVRC-3000

BALLON DE STOCKAGE

- BVFC-0 BVFC-1 BVFC-2
- BVRC-1500 BVRC-2000 BVRC-3000

SYSTÈMES SOLAIRES À CIRCULATION FORCÉE

ÉCOLOGIE • ÉCONOMIE • ESTHÉTIQUE • EFFICACITÉ AUTONOMIE

Les systèmes solaires à circulation forcée permettent de réaliser des économies d'énergie allant de 70 à 100%, en fonction de la taille du système et de l'ensoleillement de la région.

En réduisant le temps de fonctionnement des éléments chauffants ou des ballons tampons, ces systèmes diminuent considérablement les émissions de dioxyde de carbone, contribuant ainsi à la protection de l'environnement.

Fabriqués à partir de matériaux de haute qualité et conformément aux normes internationales, nos systèmes solaires centraux disposent de toutes les certifications et tests de qualité attestant leur performance et leur fiabilité.

Conçus avec un souci d'esthétique, ces systèmes s'intègrent facilement et harmonieusement à l'architecture traditionnelle ou moderne. Ils fournissent de l'eau chaude gratuite pendant la majeure partie de l'année, et même dans les régions à faible ensoleillement, ils assurent un préchauffage efficace, réduisant ainsi de façon significative la consommation d'énergie conventionnelle.

BALLON DE STOCKAGE BVFC

- Traitement émail titane (DIN3-4753)
- Aucun, un ou deux échangeurs de chaleur

Solarheat

DONNÉES TECHNIQUES DU RÉSERVOIR D'EAU

■ Réservoir de stockage d'eau :

Acier laminé à froid avec double couche interne d'émail, cuit à 860°C conformément à la norme DIN (4753). L'émaillage est réalisé dans nos propres installations industrielles de haute technologie. Chaque ballon est contrôlé individuellement à la sortie de l'unité d'émaillage, garantissant une qualité optimale de l'émail.

■ Échangeurs thermiques pour le transfert d'énergie :

Serpentin interne en acier renforcé (type Tubo) intégré dans la partie inférieure du réservoir, destiné au raccordement au capteur solaire.

En option, serpentin interne en acier renforcé (type Tubo) intégré dans la partie supérieure, pour le raccordement à une source de chauffage secondaire.

■ Isolation thermique:

Polyuréthane expansé écologique pour les réservoirs jusqu'à 500 litres, minimisant les pertes de chaleur et maintenant la température de l'eau chaude. Isolation flexible et amovible d'une épaisseur de 70 mm pour les capacités de 800 litres et 1000 litres.

■ Habillage extérieur :

Revêtement spécial en PVC assurant une excellente esthétique.

■ Protection cathodique:

Anode en magnésium remplaçable périodiquement, pour une protection efficace contre la corrosion interne et les dépôts minéraux dus aux réactions électrolytiques.

■ Éléments électriques :

Résistance électrique conforme à la réglementation locale du pays de destination. Thermostat automatique avec protection bipolaire et fusible de sécurité supplémentaire.

Réservoirs à Circulation Forcée

DONNÉES TECHNIQUES DU RÉSERVOIR D'EAU

■ Réservoir de Stockage d'eau :

Acier laminé à froid avec une double couche interne d'émail, cuit à 860°C selon DIN4753.

L'émaillage est réalisé dans nos propres installations industrielles de haute technologie. Les chaudières sont contrôlées individuellement à la sortie de l'unité d'émaillage, garantissant ainsi la qualité supérieure de l'émail.

• Échangeurs de chaleur pour le transfert d'énergie thermique :

- Serpentin interne en acier robuste (type Tubo) intégré dans la partie inférieure du réservoir, pour le raccordement au capteur solaire.
- □ Serpentin interne en acier robuste (type Tubo) en option intégré dans la partie supérieure du réservoir, pour le raccordement à la source de chauffage secondaire.

■ Isolation Thermique:

Qui minimise les pertes de chaleur et maintient la température de l'eau chaude :

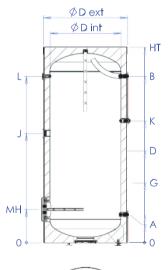
- □ Polyuréthane expansé écologique pour les modèles jusqu'à 500 litres.
- □ Isolation flexible amovible de 70 mm d'épaisseur, pour les modèles de 800 litres et 1000 litres.
- **Boîtier externe** en PVC spécial pour une excellente esthétique.
- **Protection cathodique** avec une anode en magnésium remplaçable périodiquement pour une protection interne efficace contre la corrosion et les dépôts minéraux causés par les réactions électrolytiques.

Composants Électriques :

- □ Élément chauffant conforme aux réglementations locales du pays de destination*
- □ Thermostat à régulation automatique avec protection bipolaire et fusible auxiliaire*

Les composants électriques sont optionnels et fournis sur commande (alimentation de secours). Tous les composants électriques sont marqués CE conformément aux normes

EN 60335-1 et EN 60335-2-21.

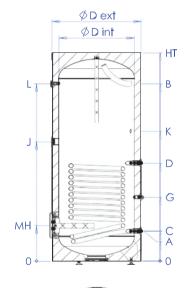

BALLON DE STOCKAGE BVFC-BVRC

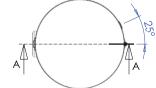
Réservoir à Circulation Forcée - SANS ÉCHANGEUR DE CHALEUR BVFC-0								
MODÈLE		160Lt Ø600	200Lt Ø600	300Lt Ø600	400Lt Ø700	500Lt Ø700	800Lt Ø990	1000Lt Ø990
Capacité	Lt	162	199	301	400	469	805	1002
Poids Net	kg	51	59	81	96	108	171	200
Isolation	mm	50	50	50	50	50	70	70
Pertes de Chaleur ΔT 45K	kWh/24h	1.4	1.5	1.7	2.2	2.5	3.2	3,5
Classe d'Efficacité Énergétique		В	В	В	С	С	С	С
Température Maximale de Fonction	nement 0°C	95	95	95	95	95	95	95
Pression Nominale	bar	10	10	10	10	10	8	8
1 ression recommunic	Dai	.0	.0	.0	.0	.0	o o	o .

MODÈLE			160L Ø600	200L Ø600	300L Ø600	400L Ø700	500L Ø700	800L Ø990	1000L Ø990
Diamètre extérieur	D ext	mm	600	600	600	700	700	990	990
Internal Diameter	D int	mm	500	500	500	600	600	850	850
Hauteur	HT	mm	1035	1230	1760	1655	1900	1770	2100
Regard	МН	mm	287	287	287	283	283	459	459
Entrée d'eau Froide	Α	mm	242	242	242	238	238	331	331
Sortie d'eau Chaude	В	mm	787	982	1512	1408	1658	1372	1727
Sortie HE Inférieure	С	mm	-	-	-	-	-	-	-
Entrée HE Inférieure	D	mm	-	-	-	-	-	-	-
Sortie Supérieure HE	E	mm	-	-	-	-	-	-	-
Entrée Supérieure HE	F	mm	-	-	-	-	-	-	-
Poche de Capteur 1	G	mm	-	-	-	-	-	-	-
Poche de Capteur 2	Н	mm	-	-	-	-	-	-	-
Élément Chauffant	J	mm	557	694	1012	858	993	953	1154
Recirculation	K	mm	602	712	1122	1018	1231	1025	1262
Thermomètre	L	mm	787	982	1512	1408	1658	1372	1727

REMARQUE : Tolérance dimensionnelle ± 10 mm

Hauteur	(HT)	160lt500lt	800lt1000lt		
Diamètre Extérieur) ext		
Diamètre Intérieur		D int			
Regard	МН	Ø180	Ø300		
Entrée d'eau Froide	Α	F 1"	F 1 1/2"		
Sortie d'eau Chaude	В	F 1"	F 1 1/2"		
Élément Chauffant	J	F 1 1/2"	F 1 1/2"		
Recirculation	K	F 3/4"	F 3/4"		
Thermomètre	L	F 1/2"	F 1/2"		


Réservoir à Circulation Forcée - ÉCHANGEUR DE CHALEUR SIMPLE (BVFC-1)

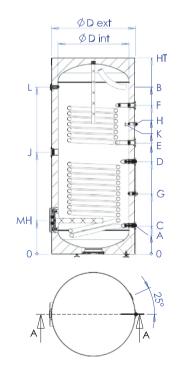

MODÈLE		160Lt Ø600	200Lt Ø600	300Lt Ø600	400Lt Ø700	500Lt Ø700	800Lt Ø990	1000Lt Ø990
Capacité	Lt	155	191	289	386	452	776	968
Poids Net	kg	68	78	109	127	147	223	264
Isolation	mm	50	50	50	50	50	70	70
Surface de l'échangeur de Chaleur C1	m²	0,85	0,95	1,48	1,65	2,06	2,69	3,18
Capacité de l'échangeur de Chaleur C1	Lt	5,10	5,74	8,93	10,21	12,44	22,28	26,00
Sortie de l'échangeur de Chaleur (60-80 °C) C1	kW	26	32	36	45	52	62	78
Échangeur de chaleur à Débit Continu (60-80	°C) C1 L/h	639	786	885	1106	1278	1523	1917
Pertes de Chaleur ΔT 45K	kWh/24h	1,4	1,5	1,7	2,2	2,5	3,2	3,5
Classe d'Efficacité Énergétique		В	В	В	С	С	С	С
Température Maximale de Fonctionnement	°C	95	95	95	95	95	95	95
Pression Nominale	bar	10	10	10	10	10	8	8
Pression Nominale de l'échangeur de Chaleur	bar	6	6	6	6	6	6	6
Facteur NL C1		2,8	4,2	8,6	12,5	19	28	36

MODÈLE			160L Ø600	200L Ø600	300L Ø600	400L Ø700	500L Ø700	800L Ø990	1000L Ø990
Diamètre Extérieur	D ext	mm	600	600	600	700	700	990	990
Diamètre Intérieur	D int	mm	500	500	500	600	600	850	850
Hauteur	нт	mm	1035	1230	1760	1655	1900	1770	2100
Regard	МН	mm	287	287	287	283	283	459	459
Entrée d'Eau Froide	Α	mm	242	242	242	238	238	331	331
Sortie d'Eau Chaude	В	mm	787	982	1512	1408	1658	1372	1727
Sortie HE Inférieure	С	mm	242	242	242	238	238	331	331
Entrée HE Inférieure	D	mm	602	647	872	778	913	936	1046
Sortie Supérieure HE	E	mm	-	-	-	-	-	-	-
Entrée Cupérieure HE	F	mm	-	-	-	-	-	-	-
Poche de Capteur 1	G	mm	422	445	557	508	576	634	689
Poche de Capteur 2	Н	mm	-	-	-	-	-	-	-
Élément Chauffant	J	mm	652	694	1012	858	993	994	1154
Recirculation	K	mm	605	735	1088	1018	1184	1025	1262
Thermomètre	L	mm	787	982	1512	1408	1658	1372	1727

REMARQUE: Tolérance dimensionnelle ± 10 mm

Hauteur	(HT)	160lt500lt	800lt1000lt
Diamètre Extérieur		D	ext
Diamètre Intérieur		D	int
Regard	МН	Ø180	Ø300
Entrée d'eau Froide	Α	F 1"	F 1 1/2"
Sortie d'eau Chaude	В	F 1"	F 1 1/2"
Sortie HE Inférieure	С	F 1"	F 1 1/2"
Entrée HE Inférieure	D	F 1"	F 1 1/2"
Poche de Capteur 1	G	F 1/2"	F 1/2"
Élément Chauffant	J	F 1 1/2"	F 1 1/2"
Recirculation	K	F 3/4"	F 3/4"
Thermomètre	L	F 1/2"	F 1/2"

BALLON DE STOCKAGE BVFC-BVRC

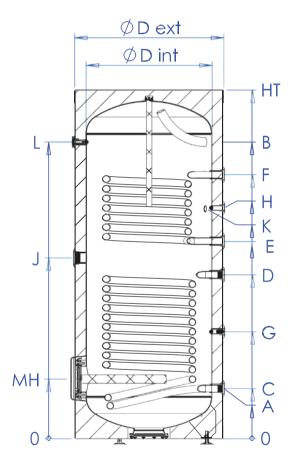

Réservoirs à Circulation Forcée - ÉCHANGEUR DE CHALEUR DOUBLE (BVFC-2)

MODÈLE		160Lt Ø600	200Lt Ø600	300Lt Ø600	400Lt Ø700	500Lt Ø700	800Lt Ø990	1000Lt Ø990
Capacité	Lt	153	187	283	378	443	763	952
Poids Net	kg	72	88	121	143	166	248	289
Isolation	mm	50	50	50	50	50	70	70
Surface de l'échangeur de Chaleur C1	m²	0,64	0,85	1,27	1,65	2,06	2,45	3,18
Surface de l'échangeur de Chaleur C2	m²	0,42	0,62	0,85	0,97	0,96	1,46	1,49
Capacité de l'échangeur de Chaleur C1	Lt	3,83	5,10	7,66	10,21	12,44	20,11	26,00
Capacité de l'échangeur de Chaleur C2	Lt	2,55	3,83	5,10	5,87	6,06	11,96	12,17
Sortie de l'échangeur de Chaleur (60-80°C) C1	kW	17	26	34	45	52	57	78
Sortie de l'échangeur de Chaleur (60-80°C) C2	kW	13	16	26	25	31	39	33
Échangeur de Chaleur à Débit Continu (60-80 °C) C1	L/h	418	639	835	1106	1278	1401	1917
Échangeur de Chaleur à Débit Continu (60-80 °C) C2	L/h	319	393	639	614	762	958	811
Pertes de Chaleur ΔT 45K	kWh/24h	1,4	1,5	1,7	2,2	2,5	3,2	3,5
Classe d'efficacité énergétique		В	В	В	С	С	С	С
Température Maximale de Fonctionnement	°C	95	95	95	95	95	95	95
Pression Nominale	bar	10	10	10	10	10	8	8
Pression Nominale de l'échangeur de Chaleur	bar	6	6	6	6	6	6	6
Facteur NL C1		2,8	4,0	8,2	12,5	19	26	35
Facteur NL C1		0,5	0,8	2,5	2,3	3,2	10	16

MODÈLE			160L Ø600	200L Ø600	300L Ø600	400L Ø700	500L Ø700	800L Ø990	1000L Ø990
Diamètre extérieur	D ext	mm	600	600	600	700	700	990	990
Diamètre intérieur	D int	mm	500	500	500	600	600	850	850
Hauteur	HT	mm	1035	1230	1760	1655	1900	1770	2100
Regard	МН	mm	287	287	287	283	283	459	459
Entrée d'eau froide	Α	mm	242	242	242	238	238	331	331
Sortie d'eau chaude	В	mm	787	982	1512	1408	1658	1372	1727
Sortie HE inférieure	С	mm	242	242	242	238	238	331	331
Entrée HE inférieure	D	mm	507	602	782	778	913	881	1046
Sortie Supérieure HE	E	mm	607	712	942	938	1073	1025	1262
Entrée supérieure HE	F	mm	787	982	1302	1253	1388	1375	1612
Poche de Capteur 1	G	mm	375	422	512	508	576	606	689
Poche de Capteur 2	Н	mm	697	847	1122	1096	1231	1200	1437
Élément Chauffant	J	mm	557	657	862	858	993	953	1154
Recirculation	K	mm	605	735	1088	1018	1184	1025	1262
Thermomètre	L	mm	787	982	1512	1408	1658	1372	1727

REMARQUE : Tolérance dimensionnelle ± 10 mm

Hauteur	(HT)	160lt500lt	800lt1000lt
Diamètre Extérieur		1	O ext
Diamètre Intérieur		ı	D int
Regard	МН	Ø180	Ø300
Entrée d'Eau Froide	Α	F 1"	F 1 1/2"
Sortie d'Eau Chaude	В	F 1"	F 1 1/2"
Sortie HE Inférieure	С	F 1"	F 1 1/2"
Entrée HE Inférieure	D	F1"	F 1 1/2"
Sortie Supérieure HE	E	F 1"	F 1 1/2"
Entrée Supérieure HE	F	F1"	F 1 1/2"
Poche de Capteur 1	G	F 1/2"	F 1/2"
Poche de Capteur 2	H	F 1/2"	F 1/2"
Élément Chauffant	J	F 1 1/2"	F 1 1/2"
Recirculation	K	F 3/4"	F 3/4"
Thermomètre	L	F 1/2"	F 1/2"


- **1.** Raccordez la sortie IV du groupe hydraulique à la position C, en utilisant la vanne de freinage et une vanne d'évacuation de la boucle fermée. (6)
- 2. Raccordez la sortie II du groupe hydraulique à la position D.
- **3.** Placez la sonde n°14 (S2) sur la prise G.
- 4. Placez la sonde n°15 (S3) sur la prise H.
- **5.** Raccordez la conduite d'arrivée d'eau du réseau, à laquelle nous avons raccordé la soupape de sécurité (20), le vase d'expansion de la chaudière (21), le régulateur de pression
- 6. (27) et le clapet anti-retour (28), à la position A.
- **7.** Raccordez le robinet de consommation d'eau chaude à la position B. Il est recommandé d'utiliser un mitigeur thermostatique.
- **8.** Placez le thermomètre à la position L.
- 9. Raccordez la résistance électrique à la position J.

RACCORDEMENT DU BRÛLEUR

- 10. Raccordez la conduite d'eau chaude de la chaudière de chauffage central à la position F.
- 11. Raccordez le retour d'eau à la position E.

RACCORDEMENT DE RECIRCULATION

- **12.** Raccordez la pompe de circulation de recirculation (24) à la conduite de retour d'eau sanitaire, ainsi que le clapet anti-retour (29).
- 13. Raccordez le retour de recirculation (23) à la position K.
- **14.** Placez le contact hydrostatique (sortie d'eau chaude) sur la sortie d'eau chaude (B) et raccordez-le à la pompe de circulation (24).

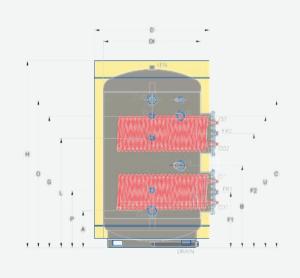
CARACTÉRISTIQUES TECHNIQUES RÉSERVOIR AU SOL BVRC 1500-2000 L AVEC 1 OU 2 SERPENTINS AMOVIBLES

■ Protection : Résine époxy, anode en magnésium

■ Matériaux du serpentin : Acier

■ Pression maximale de service du réservoir : 10 bars

■ Température maximale de service du réservoir : 85°C


■ Pression maximale du serpentin : 25 bars

■ Isolation : Mousse de polyuréthane souple amovible

de 100 mm d'épaisseur

■ Revêtement extérieur : Revêtement en acier peint RAL9006

■ Réchauffeur électrique : Sur demande

1	Гуре	1!	500L	20	2000L	
N	IUMÉRO DE PIÈCE	BVR	C-1500	BVRC-2000		
-	Capacité du Ballon sans Serpentin (Litres)	1	1680	19	980	
-	Capacité du Ballon avec un Serpentin de 3,2 m² (Litres)		1659	19	959	
-	Capacité du ballon avec deux Serpentins de 3,2 m² (Litres)		1638	19	938	
-	Capacité du Ballon avec un Serpentin de 5,4 m² (Litres)	1	1645	19	945	
-	Capacité du Ballon avec deux serpentins de 5,4 m² (Litres)		1610	19	910	
- C	apacité du Ballon avec un serpentin de 3,2 m² et un Serpentin de 5,4 m²		1625	19	925	
-	Capacité du Serpentin de 3,2 m² (Litres)	1	19,83	19	,83	
-	Capacité du Serpentin de 5,4 m² (Litres)	3	33,05	33	3,05	
-	Rendement du Serpentin de 3,2 m² (kW)		78	3,92		
-	Rendement du Serpentin de 5,4 m² (kW)		133	3,18		
-	Nombre de Brides / Diamètre des Trous (mm) /	2 / Ø420 / Ø508		2 / Ø420 / Ø508		
	Diamètre Extérieur (mm)			2/942	.0 / Ø508	
В	Recirculation (R)		902	2"	937	
U	Recirculation (R)	2"	1457		1478	
Α	Entrée d'eau froide (CWI)		390	2"	425	
0	Sortie d'eau chaude (HWO)	2"	1640		1631	
С	Thermostat (T)	1/211	1640		1661	
G	Thermomètre (TR)	1/2"	1457		1478	
Р	Sonde (S)	1/2"	620	1/2"	625	
L	Sonde (S)	1/2	1210	1/2	1245	
FI	Sortie Libre (FR)	11/2"	601	11/2"	623	
F2	Sortie Libre (FR)	11/2	1261	11/2	1283	
Н	Hauteur Totale	:	2100	2	120	
D	Diamètre Extérieur	1	1300	14	÷00	
Dt	Diamètre Intérieur		1100	12	200	
- Hauteur d'inclinaison (mm)			2457		517	
- Poids de la Bobine 3,2 m² (kg)			68		68	
-	Poids de la Bobine 5,4 m² (kg)		82		82	
-	Poids Total du Produit Fini sans Bobine (kg)		420	4	90	

PERFORMANCES THERMIQUES DU RÉSERVOIR À ACCUMULATION BVRC 1500 L (1 OU 2 ÉCHANGEURS DE CHALEUR À SERPENTIN)

Les tableaux ci-dessous présentent les rendements de la chaudière au sol BVRC-1500 1500L pour différents débits. Le tableau 1 concerne l'échangeur thermique supérieur, tandis que le tableau 2 concerne l'échangeur thermique inférieur. Surface de l'échangeur thermique supérieur : 3,2 m² ou 5,4 m².

TABLEAU 1 : Rendement de l'échangeur thermique pour la production d'ECS de 15°C à 60°C. La température à l'entrée de l'échangeur thermique est considérée comme étant de 80°C.

TABLEAU 2: Rendement de l'échangeur thermique pour la production d'ECS de 15°C à 60°C. La température à l'entrée de l'échangeur thermique est considérée comme étant de 80°C.

Surface de l'échangeur de Chaleur Supérieur : 3,2 m² ou 5,4 m²								
ÉCHANGEUR DE CHALEUR SUPÉRIEUR DÉBIT	EFFICACITÉ DE L'ÉCHANGEUR DE CHALEUR SUPÉRIEUR (3,2 m²)	EFFICACITÉ DE L'ÉCHANGEUR DE CHALEUR SUPÉRIEUR (5,4 m²)						
1.800 L/h	48,10 kW	64,60 kW						
2.600 L/h	54,50 kW	79,20 kW						
3.900 L/h	61,40 kW	90,90 kW						

Surface Inférie	Surface Inférieure de l'échangeur de Chaleur : 3,2 m² ou 5,4 m²									
ÉCHANGEUR DE CHALEUR À DÉBIT INFÉRIEUR	ÉCHANGEUR DE CHALEUR À FAIBLE EFFICACITÉ (3,2 m²)	ÉCHANGEUR DE CHALEUR À FAIBLE EFFICACITÉ (5,4 m²)								
1.800 L/h	49,10 kW	65,30 kW								
2.600 L/h	55,20 kW	78,40 kW								
3.900 L/h	62,20 kW	91,10 kW								

- L'échangeur de chaleur supérieur chauffe 52 % de la capacité totale de la chaudière ECS
- L'échangeur de chaleur inférieur chauffe 88 % de la capacité totale de la chaudière ECS
- Combinaison d'échangeurs de chaleur :
- □ 3,2 m² + 3,2 m² = 6,4 m²
- □ 5,4 m² + 3,2 m² = 8,6 m²
- $= 5.4 \text{ m}^2 + 5.4 \text{ m}^2 = 10.8 \text{ m}^2$

PERFORMANCES THERMIQUES DU RÉSERVOIR À ACCUMULATION BVRC 2000 L (1 OU 2 ÉCHANGEURS DE CHALEUR À SERPENTIN)

Les tableaux ci-dessous présentent les rendements de la chaudière au sol BVRC-2000 2000L pour différents débits. Le tableau 3 concerne l'échangeur de chaleur supérieur, tandis que le tableau 4 concerne l'échangeur de chaleur inférieur

TABLEAU 3 : Rendement de l'échangeur de chaleur pour la production d'ECS de 15°C à 60°C. La température à l'entrée de l'échangeur est considérée comme étant de 80°C.

TABLEAU 4: Rendement de l'échangeur de chaleur pour la production d'ECS de 15°C à 60°C. La température à l'entrée de l'échangeur est considérée comme étant de 80°C.

Surface de l'échangeur de Chaleur Supérieur : 3,2 m² ou 5,4 m²			
ÉCHANGEUR DE CHALEUR SUPÉRIEUR DÉBIT	EFFICACITÉ DE L'ÉCHANGEUR DE CHALEUR SUPÉRIEUR (3,2 m²)	EFFICACITÉ DE L'ÉCHANGEUR DE CHALEUR SUPÉRIEUR (5,4 m²)	
1.800 L/h	48,10 kW	64,60 kW	
2.600 L/h	54,50 kW	79,20 kW	
3.900 L/h	61,40 kW	90,90 kW	

Surface Inférieure de l'échangeur de Chaleur : 3,2 m² ou 5,4 m²			
ÉCHANGEUR DE CHALEUR INFÉRIEUR DÉBIT	ÉCHANGEUR DE CHALEUR À FAIBLE EFFICACITÉ (3,2 m²)	ÉCHANGEUR DE CHALEUR À FAIBLE EFFICACITÉ (5,4 m²)	
1.800 L/h	49,10 kW	65,30 kW	
2.600 L/h	55,20 kW	78,40 kW	
3.900 L/h	62,20 kW	91,10 kW	

- L'échangeur de chaleur supérieur chauffe 52 % de la capacité totale de la chaudière ECS
- L'échangeur de chaleur inférieur chauffe 88 % de la capacité totale de la chaudière ECS
- Combinaison d'échangeurs de chaleur :

□ 3,2 m² + 3,2 m² = 6,4 m²

 $= 5,4 \text{ m}^2 + 3,2 \text{ m}^2 = 8,6 \text{ m}^2$

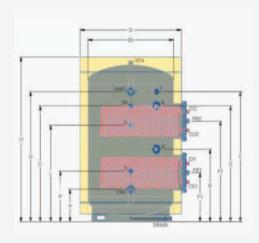
□ 5,4 m² + 5,4 m² = 10,8 m²

CARACTÉRISTIQUES TECHNIQUES RÉSERVOIR BVRC FAIBLE HAUTEUR AU SOL 3000 L AVEC 1 OU 2 SERPENTINS AMOVIBLES

■ Protection : Résine époxy, anode en magnésium

■ Matériaux du serpentin : Acier

■ Pression maximale de service du réservoir : 10 bars


■ Température maximale de service du réservoir : 85°C

■ Pression maximale du serpentin : 25 bars

■ **Isolation :** Mousse de polyuréthane souple amovible de 100 mm d'épaisseur

■ Revêtement extérieur : Revêtement en acier peint RAL9006

■ Réchauffeur électrique : Sur demande

Type NUMÉRO DE PIÈCE	Faible Hauteur 3000L BVRC-3000	
- Capacité du Réservoir sans Serpentin (Litre)	2990	
- Capacité du Réservoir avec une Bobine de 3,2 m² (Litres)	295	4
- Capacité du Réservoir avec deux Serpentins de 3,2 m² (Litres)	2918	3
- Capacité du Réservoir avec une Bobine de 5,4 m² (Litre)	293	2
- Capacité du Réservoir avec deux Serpentins de 5,4 m² (Litres)	287	5
- Capacité du Réservoir avec un Serpentin de 3,2 m² et un de 5,4 m²	289	8
- Bobine de 3,2 m² de Capacité (Litre)	19,83	3
- Bobine d'une Capacité de 5,4 m² (Litres)	33,05	
- Bobine 3,2 m² Efficacité (kW)	78,92	
- Bobine 5,4 m² Efficacité (kW)	133,1	8
- Nombre de Brides / Diamètre du Trou (mm) /	2/Ø420/Ø508	
Diamètre Extérieur (mm)		
B Recirculation (R)		1084
U Recirculation(R)	3"	1925
A Entrée d'eau Froide (CWI)		428
O Sortie d'eau Chaude (HWO)	3"	2115
C Thermostat (T)	7/20	2115
G Thermomètre(TR)	1/2"	1925
P Capteur (S)	1/2"	627
L Capteur (S)	1/2	1564
F1 Sortie Gratuite (FR)	11/2"	653
F2 Sortie Gratuite (FR)	11/2	1563
H Hauteur Totale	2330	0
D Diamètre Extérieur	1700	0
Dt Diamètre Intérieur	1500	0
- Hauteur d'Inclinaison (mm)	300	2
Bobine 3,2m² Poids (kg) 90		
- Bobine 5,4m² Poids (kg)	130	1
- Poids Total du Produit Fini Sans Bobine (kg)	645	5

PERFORMANCES THERMIQUES DU RÉSERVOIR À ACCUMULATION BVRC 3000 L (1 OU 2 ÉCHANGEURS DE CHALEUR À SERPENTIN)

Les tableaux ci-dessous présentent les rendements du réservoir au sol BVRC-3000L pour différents débits. Le tableau 1 concerne l'échangeur de chaleur supérieur, tandis que le tableau 2 concerne l'échangeur de chaleur inférieur.

TABLEAU 1 : Rendement de l'échangeur de chaleur pour la production d'ECS de 15°C à 60°C. La température à l'entrée de l'échangeur de chaleur est considérée comme étant de 80°C.

TABLEAU 2: Rendement de l'échangeur de chaleur pour la production d'ECS de 15°C à 60°C. La température à l'entrée de l'échangeur de chaleur est considérée comme étant de 80°C.

Surface de l'échangeur de Chaleur Supérieur : 3,2 m² ou 5,4 m²				
ÉCHANGEUR DE CHALEUR SUPÉRIEUR DÉBIT	EFFICACITÉ DE L'ÉCHANGEUR DE CHALEUR SUPÉRIEUR (3,2 m²)	EFFICACITÉ DE L'ÉCHANGEUR DE CHALEUR SUPÉRIEUR (5,4 m²)		
3000 L/h	57,20 kW	82 kW		
4000 L/h	62,15 kW	90,60 kW		
5000 L/h	64,90 kW	98,80 kW		

Surface inférieure de l'échangeur de Chaleur : 3,2 m² ou 5,4 m²			
ÉCHANGEUR DE CHALEUR SUPÉRIEUR DÉBIT	EFFICACITÉ DE L'ÉCHANGEUR DE CHALEUR SUPÉRIEUR (3,2 m²)	EFFICACITÉ DE L'ÉCHANGEUR DE CHALEUR SUPÉRIEUR (5,4 m²)	
3000 L/h	57,30 kW	82,10 kW	
4000 L/h	62,20 kW	91,50 kW	
5000 L/h	64,70 kW	98,30 kW	

- L'échangeur de chaleur supérieur chauffe 47 % de la capacité totale de la chaudière ECS
- L'échangeur de chaleur inférieur chauffe 86 % de la capacité totale de la chaudière ECS
- Combinaison d'échangeurs de chaleur
- $= 3,2 \text{ m}^2 + 3,2 \text{ m}^2 = 6,4 \text{ m}^2$
- □ 5,4 m² + 3,2 m² = 8,6 m²
- $= 5.4 \text{ m}^2 + 5.4 \text{ m}^2 = 10.8 \text{ m}^2$

LE SOLAIRE
UNE ENERGIE PROPRE ET GRATUITE,

PROFITEZ - EN!

Solarheat

www.solarheat.co